skip to main content


Search for: All records

Creators/Authors contains: "Feng, Chao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The crop wild relative Fragaria nilgerrensis is adapted to a variety of diverse habitats across its native range in China. Thus, discoveries made in this species could serve as a useful guide in the development of new superior strawberry cultivars that are resilient to new or variable environments. However, the genetic diversity and genetic architecture of traits in this species underlying important adaptive traits remain poorly understood. Here, we used whole-genome resequencing data from 193 F. nilgerrensis individuals spanning the distribution range in China to investigate the genetic diversity, population structure and genomic basis of local adaptation. We identified four genetic groups, with the western group located in Hengduan Mountains exhibiting the highest genetic diversity. Redundancy analysis suggested that both environment and geographic variables shaped a significant proportion of the genomic variation. Our analyses revealed that the environmental difference explains more of the observed genetic variation than geographic distance. This suggests that adaptation to distinct habitats, which present a unique combination of abiotic factors, likely drove genetic differentiation. Lastly, by implementing selective sweep scans and genome–environment association analysis throughout the genome, we identified the genetic variation associated with local adaptation and investigated the functions of putative candidate genes in F. nilgerrensis. 
    more » « less
  2. null (Ed.)
    Abstract Despite remarkable recent advances in transition-metal-catalyzed C(sp 3 )−C cross-coupling reactions, there remain challenging bond formations. One class of such reactions include the formation of tertiary -C(sp 3 )−C bonds, presumably due to unfavorable steric interactions and competing isomerizations of tertiary alkyl metal intermediates. Reported herein is a Ni-catalyzed migratory 3,3-difluoroallylation of unactivated alkyl bromides at remote tertiary centers. This approach enables the facile construction of otherwise difficult to prepare all-carbon quaternary centers. Key to the success of this transformation is an unusual remote functionalization via chain walking to the most sterically hindered tertiary C(sp 3 ) center of the substrate. Preliminary mechanistic and radical trapping studies with primary alkyl bromides suggest a unique mode of tertiary C-radical generation through chain-walking followed by Ni–C bond homolysis. This strategy is complementary to the existing coupling protocols with tert -alkyl organometallic or -alkyl halide reagents, and it enables the expedient formation of quaternary centers from easily available starting materials. 
    more » « less